4 – Intensity Transformation

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE4_DVS/ E-mail: p.cheung@imperial.ac.uk

Spatial Domain Processing

- Visual data is captured and stored in computer
- Only using intensity (or luminous) information
- Scene is sampled at regular spatial grid in X and Y direction
- General equation of processing is:

$$g(x,y) = T[f(x,y)]$$

- f(x, y) is the captured visual information at (x,y)
- *T*[.] is the operator defined over a neighborhood of point (x, y)
- g(x, y) is the output image at (x,y)

Neighbourhood operation

- (x_0, y_0) arbitrary location in image
- Neighbourhood is a rectangle centred on (x₀, y₀)
- This shows a 3x3 neighbourhood
- Operator T is applied to the pixel values of neighbouring pixel surrounding f(x₀, y₀)
- The result of T is output image value g(x₀, y₀)
- Processing the entire image requires such an operation performed over the entire image, pixel-by-pixel, starting from the origin

Examples of Operator

Negative Transformation

- r is the original pixel value in range [0, L-1]
- s is the resulting pixel value after negative operator

Power-law Transformation (Gamma Correction)

- $c \text{ and } \gamma$ are positive constants
- Better known as Gamma
 Correction
- Assume c = 1
- Used for processing an image for display on monitors
- Different values of γ produce a family of functions
- $\gamma = 1$ means image is not changed
- $\gamma > 1$ produces in darker image
- $\gamma < 1$ produces a ligher image
- $s = r^{\gamma}$ and $s = r^{\frac{1}{\gamma}}$ are inverse of each other

Gamma Correction for Monitor Display

Power-law Contrast Enhancement (1)

• $\gamma < 1$ lightens the image and shows break in spine

Original Image

Power-law Contrast Enhancement (2)

- Original image over exposed
- $\gamma > 1$ darkens the image

Piecewise Linear Transformation (Contrast Stretching)

- Transformation function made up of segments of lines
- Gradient of line segments always positive
- Not a mathematical function
- Lighten and darken different grayscale regions
- E.g. low contrast electron microscope image of pollens enlarged by x700
- After contrast stretching using the piecewise linear transformation
- After thresholding only

Piecewise Linear Transformation (Intensity-level slicing) (1)

- Similar to thresholding, but use two thresholds instead of one
- Result: highlight region of image with intensity between A and B
- E.g. Aortic angiogram image with interesting feature having intensity with defined region
- Only the arteries and part of heart highlighted

Piecewise Linear Transformation (Intensity-level slicing) (2)

- Similar to the previous, but preserve original image intensity except for the region with intensity between A and B
- Resulting image shows features of other part of body, but still highlighting the region of interest.
- Effectively superimposing the highlighted part onto the original image

Bit-plane slicing

- Intensity is 8-bit number
- Slice each pixel intensity values into images of EACH BIT
- Produces 8 separate images what for?

Bit-plane slicing of a US bank note (1)

- Slicing original image of bank note shown in top left
- Clearly the most-significant bit image is most important (not surprising)
- Also shows that image of the bottom 4-bits contain little information

Bit-plane slicing of a US bank note (2)

Original with 8-bit intensity

With only mostsignificant 4 bits

Formal Definition of Histogram

Let r_k , for k = 0, 1, 2, ..., L-1, denote the intensities of an *L*-level digital image, f(x, y).

The **unnormalized histogram** of *f* is defined as:

 $h(r_k) = n_k$ for k = 0, 1, 2, ..., L - 1

 n_k is the number of pixels in *f* with intensity r_k .

The subdivisions of the intensity scale are called **histogram bins**.

The **normalized histogram** of image f of dimension (MxN) is defined as:

$$p(r_k) = \frac{h(r_k)}{MN} = \frac{n_k}{MN}$$

Histogram affects contrast

Histogram Equalization

PDF and CDF

 Histogram equalization (i.e. flattening of the PDF) can be achieved by using the CDF as the intensity transformation function

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

An example – 3-bit intensity distribution of a 64 x 64 image

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_{5} = 5$	245	0.06
$r_{6} = 6$	122	0.03
$r_{7} = 7$	81	0.02

Compute the CDF and use as intensity transform function

- Note that after equalization, the final histogram have no values at 0 and 2!
- Equalized histogram is approximately flat.

Histogram equalization may not work

Histogram Matching

Matlab Functions related to this Lecture

imadjust

Adjust image intensity values or colormap

Syntax

- J = imadjust(I)
- J = imadjust(I,[low_in high_in])
- J = imadjust(I,[low_in high_in],[low_out high_out])
- J = imadjust(I,[low_in high_in],[low_out high_out],gamma)

histeq

Enhance contrast using histogram equalization

Syntax

J = histeq(I)
J = histeq(I,n)
J = histeq(I,hgram)

stretchlim

Find limits to contrast stretch image

Syntax

lowhigh = stretchlim(I)
lowhigh = stretchlim(I,Tol)

imhist

Histogram of image data

Syntax

[counts,binLocations] = imhist(I)
[counts,binLocations] = imhist(I,n)

imhistmatch

Adjust histogram of 2-D image to match histogram of reference image

Syntax

- J = imhistmatch(I,ref)
- J = imhistmatch(I,ref,nbins)